PCB電路板變形的原因分析
PCB電路板的變形需要從材料、結構、圖形分布、加工制程等幾個方面進行研究,本文將對可能產生變形的各種原因和改善方法進行分析和闡述。
電路板上的鋪銅面面積不均勻,會惡化板彎與板翹。
一般電路板上都會設計有大面積的銅箔來當作接地之用,有時候Vcc層也會有設計有大面積的銅箔,當這些大面積的銅箔不能均勻地分佈在同一片電路板上的時候,就會造成吸熱與散熱速度不均勻的問題,電路板當然也會熱脹冷縮,如果漲縮不能同時就會造成不同的應力而變形,這時候板子的溫度如果已經達到了Tg值的上限,板子就會開始軟化,造成永久的變形。
電路板上各層的連結點(vias,過孔)會限制板子漲縮
現今的電路板大多為多層板,而且層與層之間會有向鉚釘一樣的連接點(vias),連結點又分為通孔、盲孔與埋孔,有連結點的地方會限制板子漲冷縮的效果,也會間接造成板彎與板翹。
電路板本身的重量會造成板子凹陷變形
一般回焊爐都會使用鏈條來帶動電路板于回焊爐中的前進,也就是以板子的兩邊當支點撐起整片板子,如果板子上面有過重的零件,或是板子的尺寸過大,就會因為本身的種量而呈現出中間凹陷的現象,造成板彎。
V-Cut的深淺及連接條會影響拼板變形量
基本上V-Cut就是破壞板子結構的元兇,因為V-Cut就是在原來一大張的板材上切出溝槽來,所以V-Cut的地方就容易發(fā)生變形。
2.1壓合材料、結構、圖形對板件變形的響分析
PCB板由芯板和半固化片以及外層銅箔壓合而成,其中芯板與銅箔在壓合時受熱變形,變形量取決于兩種材料的熱膨脹系數(CTE)
銅箔的熱膨脹系數(CTE)為左右
而普通FR-4基材在Tg點下Z向CTE為;
TG點以上為(250~350)X10-6,X向CTE由于玻璃布存在,一般與銅箔類似。
關于TG點的注釋:
高Tg印制板當溫度升高到某一區(qū)域時,基板將由"玻璃態(tài)”轉變?yōu)?ldquo;橡膠態(tài)”,此時的溫度 稱為該板的玻璃化溫度(Tg)。也就是說,Tg是基材保持剛性的最高溫度(℃)。也就是說普通PCB基板材料在高溫下,不但產生軟化、變形、熔融等現象,同時還表現在機械、電氣特性的急劇下降。
一般Tg的板材為130度以上,高Tg一般大于170度,中等Tg約大于150度。
通常Tg≥170℃的PCB印制板,稱作高Tg印制板。
基板的Tg提高了,印制板的耐熱性、耐潮濕性、耐化學性、耐穩(wěn)定性等特征都會提高和改善。TG值越高,板材的耐溫度性能越好 ,尤其在無鉛制程中,高Tg應用比較多。
高Tg指的是高耐熱性。隨著電子工業(yè)的飛躍發(fā)展,特別是以計算機為代表的電子產品,向著高功能化、高多層化發(fā)展,需要PCB基板材料的更高的耐熱性作為重要的保證。以SMT、CMT為代表的高密度安裝技術的出現和發(fā)展,使PCB在小孔徑、精細線路化、薄型化方面,越來越離不開基板高耐熱性的支持。
所以一般的FR-4與高Tg的FR-4的區(qū)別:是在熱態(tài)下,特別是在吸濕后受熱下,其材料的機械強度、尺寸穩(wěn)定性、粘接性、吸水性、熱分解性、熱膨脹性等各種情況存在差異,高Tg產品明顯要好于普通的PCB基板材料。
其中做好內層圖形的芯板的膨脹由于圖形分布與芯板厚度或者材料特性不同而不同,當圖形分布與芯板厚度或者材料特性不同而不同,當圖形分布比較均勻,材料類型一致,不會產生變形。當PCB板層壓結構存在不對稱或者圖形分布不均勻時會導致不同芯板的CTE差異較大,從而在壓合過程中產生變形。其變形機理可通過以下原理解釋。
假設有兩種CTE相差較大的芯板通過半固化片壓合在一起,其中A芯板CTE為1.5x10-5/℃,芯板長度均為1000mm。在壓合過程作為粘結片的半固化片,則經過軟化、流動并填充圖形、固化三個階段將兩張芯板粘合在一起。
普通FR-4樹脂在不同升溫速率下的動粘底曲線,一般情況下,材料從90℃左右開始流動,并在達到TG點以上開始交聯固化,在固化之前半固化片為自由狀態(tài),此時芯板和銅箔處在受熱后自由膨脹狀態(tài),其變形量可以通過各自的CTE和溫度變化值得到。
模擬壓合條件,溫度從30℃升至180℃,
此時兩種芯板變形量分別為
△LA=(180℃~30℃)x1.5x10-5m/℃X1000mm=2.25mm
△LB=(180℃~30℃)X2.5X10-5M/℃X1000mm=3.75mm
此時由于半固化尚在自由狀態(tài),兩種芯板一長一短,互不干涉,尚未發(fā)生變形。
壓合時會在高溫下保持一段時間,直到半固化完全固化,此時樹脂變成固化狀態(tài),不能隨意流動,兩種芯板結合在一起.當溫度下降時,如無層間樹脂束縛,芯板會回復至初始長度,并不會產生變形,但實際上兩張芯板在高溫時已經被固化的樹脂粘合,在降溫過程中不能隨意收縮,其中A芯板應該收縮3.75mm,實際上當收縮大于2.25mm時會受到A芯板的阻礙,為達成兩芯板間的受力平衡,B芯板不能收縮到3.75mm,而A芯板收縮會大于2.25mm,從而使整板向B芯板方向變曲。
根據上述分析可知,PCB板的層壓結構、材料類型已經圖形分布是否均勻,直接影響了不同芯板以及銅箔之間的CTE差異,在壓合過程中的漲縮差異會通過半固化片的固片過程而被保留并最終形成PCB板的變形。
2.2 PCB板加工過程中引起的變形
PCB板加工過程的變形原因非常復雜可分為熱應力和機械應力兩種應力導致。其中熱應力主要產生于壓合過程中,機械應力主要產生板件堆放、搬運、烘烤過程中。下面按流程順序做簡單討論。
覆銅板來料:覆銅板均為雙面板,結構對稱,無圖形,銅箔與玻璃布CTE相差無幾,所以在壓合過程中幾乎不會產生因CTE不同引起的變形。但是,覆銅板壓機尺寸大,熱盤不同區(qū)域存在溫差,會導致壓合過程中不同區(qū)域樹脂固化速度和程度有細微差異,同時不同升溫速率下的動黏度也有較大差異,所以也會產生由于固化過程差異帶來的局部應力。一般這種應力會在壓合后維持平衡,但會在日后的加工中逐漸釋放產生變形。
壓合:PCB壓合工序是產生熱應力的主要流程,其中由于材料或結構不同產生的變形見上一節(jié)的分析。與覆銅板壓合類似,也會產生固化過程差異帶來的局部應力,PCB板由于厚度更厚、圖形分布多樣、半固化片更多等原因,其熱應力也會比覆銅板更多更難消除。而PCB板中存在的應力,在后繼鉆孔、外形或者燒烤等流程中釋放,導致板件產生變形。
阻焊、字符等烘烤流程:由于阻焊油墨固化時不能互相堆疊,所以PCB板都會豎放在架子里烘板固化,阻焊溫度150℃左右,剛好超過中低Tg材料的Tg點,Tg點以上樹脂為高彈態(tài),板件容易在自重或者烘箱強風作用下變形。
熱風焊料整平:普通板熱風焊料整平時錫爐溫度為225℃~265℃,時間為3S-6S。熱風溫度為280℃~300℃.焊料整平時板從室溫進錫爐,出爐后兩分鐘內又進行室溫的后處理水洗。整個熱風焊料整平過程為驟熱驟冷過程。由于電路板材料不同,結構又不均勻,在冷熱過程中必然會出現熱應力,導致微觀應變和整體變形翹區(qū)。
存放:PCB板在半成品階段的存放一般都堅插在架子中,架子松緊調整的不合適,或者存放過程中堆疊放板等都會使板件產生機械變形。尤其對于2.0mm以下的薄板影響更為嚴重。
除以上因素以外,影響PCB變形的因素還有很多。
同類文章排行
- 車用PCB行業(yè)是一個擁有巨大發(fā)展?jié)摿Φ陌鍓K
- 中國PCB行業(yè)增速高于全球平均水平
- 芯片如何焊接在電路板上?
- FPC柔性線路板在可穿戴設備中的應用優(yōu)勢分析
- 如何清潔電路板?
- 關于多層PCB線路板的誕生
- 如何避免FPC連接器斷裂?
- FPC制程中常見缺陷和解決方案
- PCB過孔為什么不能打在焊盤上?
- 柔性線路板三種主要功能敘述
最新資訊文章
- 車用PCB行業(yè)是一個擁有巨大發(fā)展?jié)摿Φ陌鍓K
- 中國PCB行業(yè)增速高于全球平均水平
- 芯片如何焊接在電路板上?
- FPC柔性線路板在可穿戴設備中的應用優(yōu)勢分析
- 如何清潔電路板?
- 關于多層PCB線路板的誕生
- 如何避免FPC連接器斷裂?
- FPC制程中常見缺陷和解決方案
- PCB過孔為什么不能打在焊盤上?
- 柔性線路板三種主要功能敘述